Abstract
Floating catalytic chemical vapor deposition technique was used for synthesizing carbon nanotubes (CNTs) using ferrocene in benzene as the hydrocarbon source. The functionalization of CNTs was carried out by oxidation followed by grafting of potassium iodide (KI) and mercaptoethanol (HS(CH2)2OH) ligands to produce iodide-grafted CNTs (CNT-I) and thiol-functionalized CNTs (CNT-SH), respectively. The resulting adsorbents have been thoroughly characterized by various techniques. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies revealed the efficient grafting of the ligands. Further, their adsorption capacities towards antimonite have been assessed. The adsorption kinetics fitted the pseudo-second-order model for both the adsorbents. Moreover, the adsorption of Sb(III) followed Langmuir and Freundlich's model. The maximum adsorption capacity of CNT-I and CNT-SH for Sb(III) at pH 7 was found to be 200 and 140.85 mg/g, respectively. The interference effect of various ions on the adsorption of antimonite was studied. A suitable mechanism for Sb(III) adsorption has been postulated using TEM, XRD, XPS, and FTIR. The adaptability of the adsorbents was demonstrated by the removal capacity of Sb(III) at parts per billion levels from nuclear decontamination formulation (NAC) and tap water matrix as well.
http://ift.tt/2CCkGFt
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου