Publication date: 15 April 2018
Source:Materials & Design, Volume 144
Author(s): Xiaofei Zhang, Lixin Chen, Jin Yun, Jie Kong
Ferrocene-containing organosilicon polymers demonstrate wide applications in catalysts, redox sensors, ceramic nanomaterials and nanolithography fields. However, most synthesis methods for ferrocene-containing organosilicon polymers require either strict water-free and oxygen-free conditions or the presence of platinum complex catalysts. In this contribution, the free radical copolymerization of 1, 1′‑bis(dimethylvinylsilyl)ferrocene (DVFc) and trimethylolpropane trimethacrylate (TMPTMA) was achieved to construct either soluble branched ferrocene-containing organosilicon polymers or uniform cross-linked microspheres only through the feed ratio tuning of the two monomers. The structures of copolymer and cross-linked microspheres have been characterized by one-dimensional nuclear magnetic resonance (1D NMR) and two-dimensional (2D) NMR measurements. Furthermore, the novel organosilicon polymers could be employed as preceramic precursors to prepare magnetic Si-C-Fe-(O) ceramics with favorable ceramic yield at high temperature. The nanocrystals-containing ceramics magnetism could be tuned through copolymer nature or pyrolysis condition variations.
Graphical abstract
http://ift.tt/2EXv9ke
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου