Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 23 Φεβρουαρίου 2018

Reverting iodine avidity of radioactive-iodine refractory thyroid cancer with a new tyrosine kinase inhibitor (K905-0266) excavated by high-throughput NIS (sodium iodide symporter) enhancer screening platform using dual reporter gene system.

Related Articles

Reverting iodine avidity of radioactive-iodine refractory thyroid cancer with a new tyrosine kinase inhibitor (K905-0266) excavated by high-throughput NIS (sodium iodide symporter) enhancer screening platform using dual reporter gene system.

Oncotarget. 2018 Jan 23;9(6):7075-7087

Authors: Oh JM, Kalimuthu S, Gangadaran P, Baek SH, Zhu L, Lee HW, Rajendran RL, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC

Abstract
Radioactive-iodine (RAI) therapy is typically unprevailing as anaplastic thyroid cancer (ATC) management, owing to the decrease in the endogenous sodium iodide symporter (NIS) expression. Therefore, new strategies for NIS re-induction are required to improve the efficacy of RAI therapy in ATC. In this study, we developed a novel high-throughput NIS enhancer screening platform using a dual reporter gene system to identify a potent tyrosine kinase inhibitor (TKI) and selected a new hit compound, K905-0266 TKI. The effects of K905-0266 TKI treatment was validated as RAI accumulation, changes in signalling pathway related to thyroid pathogenesis, and cytotoxicity of RAI depending on re-induction of endogenous NIS expression in ATC. Furthermore, we evaluated enhancement of NIS promoter and therapeutic efficacy of RAI in ATC tumour xenograft mice. After K905-0266 TKI treatment, the expression of endogenous NIS was significantly increased, while phosphorylated-ERK was decreased. In addition, the thyroid-metabolising protein expressions were upregulated and increased of RAI accumulation and its therapeutic effects in ATC. Moreover, K905-0266 TKI increased therapeutic efficacy of RAI in ATC tumour in vivo. In conclusion, we successfully established a novel high-throughput NIS enhancer screening platform to excavate a NIS enhancer and identified K905-0266 TKI among TKI candidates and it's proven to increase the endogenous NIS expression and therapeutic efficacy of RAI in ATC. These findings suggest that a novel high-throughput NIS enhancer screening platform is useful for selecting of NIS promoter enhancers. In addition, K905-0266 TKI can be used to re-induce endogenous NIS expression and recover RAI therapy in ATC.

PMID: 29467951 [PubMed]



http://ift.tt/2Ce7YBf

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου