Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 27 Μαρτίου 2018

A Method to Assess Randomness of Functional Connectivity Matrices

S01650270.gif

Publication date: Available online 27 March 2018
Source:Journal of Neuroscience Methods
Author(s): Victor M. Vergara, Qingbao Yu, Vince D. Calhoun
BackgroundFunctional magnetic resonance imaging (fMRI) allows for the measurement of functional connectivity of the brain. In this context, graph theory has revealed distinctive non-random connectivity patterns. However, the application of graph theory to fMRI often utilizes non-linear transformations (absolute value) to extract edge representations.New methodIn contrast, this work proposes a mathematical framework for the analysis of randomness directly from functional connectivity assessments. The framework applies random matrix theory to the analysis of functional connectivity matrices (FCMs). The developed randomness measure includes its probability density function and statistical testing method.ResultsThe utilized data comes from a previous study including 603 healthy individuals. Results demonstrate the application of the proposed method, confirming that whole brain FCMs are not random matrices. On the other hand, several FCM submatrices did not significantly test out of randomness.Comparison with existing methodsThe proposed method does not replace graph theory measures; instead, it assesses a different aspect of functional connectivity. Features not included in graph theory are small numbers of nodes, testing submatrices of an FCM and handling negative as well as positive edge values.ConclusionThe random test not only determines randomness, but also serves as an indicator of smaller non-random patterns within a non-random FCM. Outcomes suggest that a lower order model may be sufficient as a broad description of the data, but it also indicates a loss of information. The developed randomness measure assesses a different aspect of randomness from that of graph theory.



https://ift.tt/2ITOySc

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου