Publication date: Available online 1 March 2018
Source:Cell Host & Microbe
Author(s): Sabine A. Fraschka, Michael Filarsky, Regina Hoo, Igor Niederwieser, Xue Yan Yam, Nicolas M.B. Brancucci, Franziska Mohring, Annals T. Mushunje, Ximei Huang, Peter R. Christensen, Francois Nosten, Zbynek Bozdech, Bruce Russell, Robert W. Moon, Matthias Marti, Peter R. Preiser, Richárd Bártfai, Till S. Voss
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.
Graphical abstract
Teaser
Fraschka, Filarsky et al. performed a genome-wide characterization of heterochromatin organization across multiple species, strains, and life cycle stages of malaria parasites. This revealed that heterochromatic gene silencing is a conserved strategy to drive clonal variation of surface antigens and to control life cycle stage transitions and cell differentiation.http://ift.tt/2FIOnYM
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου