Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 17 Μαρτίου 2018

Cytocompatibility, biofilm assembly and corrosion behavior of Mg-HAP composites processed by extrusion.

http:--linkinghub.elsevier.com-ihub-imag Related Articles

Cytocompatibility, biofilm assembly and corrosion behavior of Mg-HAP composites processed by extrusion.

Mater Sci Eng C Mater Biol Appl. 2017 Sep 01;78:667-673

Authors: Del Campo R, Savoini B, Jordao L, Muñoz A, Monge MA

Abstract
In this work the cytocompatibility of pure magnesium and Mg-xHAP composites (x=5, 10 and 15wt%) fabricated by powder metallurgy routes has been investigated. The materials were produced from raw HAP powders with particle mean sizes of 6μm (S-xHAP) or 25μm (L-xHAP). The biocompatibility study has been performed for MC3T3 cells (osteoblasts/osteoclasts) and L929 fibroblasts. The results indicate that S-Mg (pure magnesium), S-10HAP and L-10HAP composites are the materials with the best biocompatibility. The ability of S. aureus bacteria to assemble biofilms was also evaluated. Biofilm formation assays showed that these materials are not particular prone to colonization and biofilm assembly is strain dependent. The corrosion resistance of S-Mg, S-10HAP and L-10HAP materials immersed in the media used for the cells culture has also been analyzed. Different trends in the corrosion resistance have been found: S-Mg and S-10HAP show a very high resistance to corrosion whereas the corrosion of L-10HAP steadily increases with time.

PMID: 28576036 [PubMed - indexed for MEDLINE]



http://ift.tt/2tSBZ64

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου