Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 6 Μαρτίου 2018

The peptide toxin δ-hexatoxin-MrIX inhibits fast inactivation of NaVs in mouse cerebellar granule cells

Publication date: Available online 6 March 2018
Source:Peptides
Author(s): Dongfang Tang, Zhen Xiao, Yan Xu, Jiao Zeng, Dezheng Peng, Songping Liang, Cheng Tang, Zhonghua Liu
Spider venom is rich in peptide toxins that could be used to explore the structure and function of voltage-gated sodium channels (NaVs). This study has characterized a 44-amino acid peptide toxin, δ-hexatoxin-MrIX (δ-HXTX-MrIX), from the venom of the spider Macrothele raveni. δ-hexatoxin-MrIX potently inhibited the fast inactivation of NaVs in mouse cerebellar granule cells (CGCs) with an EC50 of 35.3 ± 5.9 nM. The toxin shifted both the steady-state activation and the steady-state inactivation curves of CGC NaVs to the hyperpolarized direction. δ-hexatoxin-MrIX also acted on NaV1.3 and NaV1.4 channels heterologously expressed in HEK293T cells, as well a s on NaVs in acutely isolated cockroach DUM neurons. However, the NaV1.5, NaV1.7 and NaV1.8 channels were resistant to δ-hexatoxin-MrIX. The toxin inhibited the fast inactivation of NaV1.3 and NaV1.4 with high affinity (EC50 values of 82.0 ± 3.0 nM and 24.0 ± 4.7 nM, respectively), but the saturating dose of toxin showed distinct efficacy on these two types of channels. δ-hexatoxin-MrIX is a peptide toxin acting on CGC NaVs and could be used as a pharmacological tool to explore the role of NaVs in granule cell maturation during cerebellum development.



http://ift.tt/2D6r1cK

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου