Publication date: 30 July 2018
Source:Biosensors and Bioelectronics, Volume 112
Author(s): Xu Zhou, Long Yang, Xiaoping Tan, Genfu Zhao, Xiaoguang Xie, Guanben Du
Prostate specific antigen (PSA) is the most significant biomarker for the screening of prostate cancer in human serum. However, most methods for the detection of PSA often require major laboratories, precisely analytical instruments and complicated operations. Currently, the design and development of satisfying electrochemical biosensors based on biomimetic materials (e.g. synthetic receptors) and nanotechnology is highly desired. Thus, we focused on the combination of molecular recognition and versatile nanomaterials in electrochemical devices for advancing their analytical performance and robustness. Herein, by using the present prepared multifunctional hydroxyl pillar[5]arene@gold nanoparticles@graphitic carbon nitride (HP5@AuNPs@g–C3N4) hybrid nanomaterial as robust biomimetic element, a high-performance electrochemical immunosensor for detection of PSA was constructed. The as-prepared immunosensor, with typically competitive advantages of low cost, simple preparation and fast detection, exhibited remarkable robustness, ultra-sensitivity, excellent selectivity and reproducibility. The limit of detection (LOD) and linear range were 0.12 pg mL–1 (S/N = 3) and 0.0005–10.00 ng mL–1, respectively. The satisfying results provide a promising approach for clinical detection of PSA in human serum.
Graphical abstract
https://ift.tt/2HRLfed
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου