Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 6 Απριλίου 2018

Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease by metabolomic technology

elsevier-non-solus.png

Publication date: 16 July 2018
Source:Behavioural Brain Research, Volume 347
Author(s): Yong Wang, Ge-Juan Zhang, Yi-Na Sun, Lu Yao, Hui-Sheng Wang, Cheng-Xue Du, Li Zhang, Jian Liu
L-DOPA-induced dyskinesia (LID) is a frequent complication of chronic L-DOPA therapy in the clinical treatment of Parkinson's disease (PD). The pathogenesis of LID involves complex molecular mechanisms in the striatum. Metabolomics can shed light on striatal metabolic alterations in LID. In the present study, we compared metabolomics profiles of striatum tissue from Parkinsonian rats with or without dyskinetic symptoms after chronic L-DOPA administration. A liquid chromatography-mass spectrometry based global metabolomics method combined with multivariate statistical analyses were used to detect candidate metabolites associated with LID. 36 dysregulated metabolites in the striatum of LID rats, including anandamide, 2-arachidonoylglycerol, adenosine, glutamate and sphingosine1-phosphate were identified. Furthermore, IMPaLA metabolite set analysis software was used to identify differentially regulated metabolic pathways. The results showed that the metabolic pathways of "Retrograde endocannabinoid signaling", "Phospholipase D signaling pathway", "Glycerophospholipid metabolism" and "Sphingolipid signaling", etc. were dysregulated in LID rats compared to non-LID controls. Moreover, integrated pathway analysis based on results from the present metabolomics and our previous gene expression data in LID rats further demonstrates that aberrant "Retrograde endocannabinoid signaling" pathway might be involved in the development of LID. The present results provide a new profile for the understanding of the pathological mechanism of LID.



https://ift.tt/2Jld0w9

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου