Publication date: Available online 20 April 2018
Source:Photodiagnosis and Photodynamic Therapy
Author(s): Andreza Ribeiro Simioni, Priscila Costa Carvalho de Jesus, Antonio Claudio Tedesco
BackgroundMicrocapsules fabricated using layer-by-layer self-assembly have unique properties, making them attractive for drug delivery applications. The technique has been improved, allowing the deposition of multiple layers of oppositely charged polyelectrolytes on spherical, colloidal templates. These templates can be decomposed by coating multiple layers, resulting in hollow shells. In this paper, we describe a novel drug delivery system for loading photosensitizer drugs into hollow multilayered microcapsules for photoprocess applications.MethodsManganese carbonate particles were prepared by mixing NH4HCO3 and MnSO4 and performing consecutive polyelectrolyte adsorption processes onto these templates using poly-(sodium 4-styrene sulfonate) and poly-(allylamine hydrocholoride). A photosensitizer was also incorporated into the layers. Hollow spheres were fabricated by removing the cores in the acidic solution. The hollow, multilayered microcapsules were studied by scanning electron microscopy, steady-state, and time-resolved techniques. Their biological activity was evaluated in vitro with cancer cells using a conventional MTT assay.ResultsThe synthesized CaCO3 microparticles were uniform, non-aggregated, and highly porous spheres. The phthalocyanine derivatives loaded in the microcapsules maintained their photophysical behaviour after encapsulation. The spectroscopic results presented here showed excellent photophysical behaviour of the studied drug. We observed a desirable increase in singlet oxygen production, which is favourable for the PDT protocol. Cell viability after treatment was determined and the proposed microcapsules caused 80% cell death compared to the control.ConclusionsThe results demonstrate that photosensitizer adsorption into the CaCO3 microparticle voids together with the layer-by-layer assembly of biopolymers provide a method for the fabrication of biocompatible microcapsules for use as biomaterials.
Graphical abstract
https://ift.tt/2Hn1rqS
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου