Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 23 Απριλίου 2018

Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy

S01429612.gif

Publication date: July 2018
Source:Biomaterials, Volume 171
Author(s): Keum-Jin Yang, Jihwan Son, So Young Jung, Gawon Yi, Jihye Yoo, Dong-Kee Kim, Heebeom Koo
To develop efficient carriers for inner ear drug delivery, we prepared four kinds of phospholipid-based nanoparticles: neutral, anionic, cationic, and cationic-PEG (polyethyleneglycol) particles. PEG was used to maintain long-term particle circulation in the perilymph, avoiding non-specific binding of particles to proteins. All four nanoparticles were about 200 nm in diameter, and their zeta potentials were −4.32, −26.0, +25.8, and −0.28, respectively, for neutral, anionic, cationic, and cationic-PEG nanoparticles. To test particle efficacy in vitro, we used an artificial mucosa 100 μm in thickness to model the round window membrane (RWM) and HEI-OC1 cells, which were treated with particles containing Nile Red dye. Based on the levels of particle penetration and cellular uptake in this model system, we selected an optimal particle for further study. We also observed the movement of particles in ex vivo organotypic cultures of the organ of Corti. In mice, we analyzed the biodistribution of dexamethasone (Dex) in the inner ear after intratympanic injection of Dex-loaded nanoparticles. Then, we tested the therapeutic utility of the Dex-loaded nanoparticles in a mouse model of ototoxicity. In the auditory brainstem response (ABR) test, particle provided improved hearing loss recovery at all tested frequencies, more so than did the Dex sodium phosphate (Dex-SP) solution in current clinical use. Furthermore, quantitative PCR showed that nanoparticles reduced the levels of pro-inflammatory cytokines, exhibiting anti-inflammatory effects superior to those of Dex-SP. Thus, the surface properties of nanoparticles play pivotal roles in particle penetration and distribution after intratympanic injection. Our in vitro screening system using an artificial mucosa will also be valuable in the development of carriers for inner ear drug delivery.



https://ift.tt/2HkhPZ2

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου