Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 5 Μαΐου 2018

An embedded implementation based on adaptive filter bank for brain-computer interface systems

Publication date: Available online 5 May 2018
Source:Journal of Neuroscience Methods
Author(s): Kais Belwafi, Olivier Romain, Sofien Gannouni, Fakhreddine Ghaffari, Ridha Djemal, Bouraoui Ouni
BackgroundBrain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy.New-MethodThis article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features.ResultsThe proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7W.Comparison-with-Existing-MethodResults show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost.ConclusionsPerforming dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates.



https://ift.tt/2FMKErE

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου