Publication date: August 2018
Source:Biomaterials, Volume 174
Author(s): Ling-xiao Zhang, Xi-xiu Xie, Dong-qun Liu, Zhi Ping Xu, Rui-tian Liu
Cancer immunotherapy has shown tremendous progresses in recent years for various cancers and layered double hydroxide (LDH) nanoparticles are demonstrated as effective adjuvants for protein-based vaccines. This research further shows that the colloidal stability of LDH-based vaccines significantly influences the therapeutic efficacy and LDH nanoparticles are able to adjuvant multiple tumor-associated antigen peptides to provoke strong cell-mediated immune responses for effective inhibition of cancer growth. The LDH-based multi-target therapeutic vaccines were constructed by assembling epitope peptides and CpG onto LDH nanoparticles. Using melanoma as the model cancer and Tyrosinase-related protein 2 (Trp2) peptide as the model antigen, we demonstrated that dispersion-stable LDH-based vaccine induced stronger cytotoxic T-lymphocyte (CTL) responses and significantly inhibited tumor growth in comparison with aggregated LDH-based vaccine. We further constructed multi-target dispersion-stable LDH-based vaccine by co-loading Trp2, two mutated epitopes (M27 and M30) and CpG, which showed remarkable inhibition of melanoma growth. These results suggest that dispersion-stable LDH nanoparticles are an ideal platform to load multi-antigens and immune stimulants as effective personalized therapeutic cancer vaccines.
Graphical abstract
https://ift.tt/2KyUiAP
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου