Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 28 Μαΐου 2018

Mechanical behavior of CAD/CAM occlusal ceramic reconstruction assessed by digital color holography

Publication date: Available online 21 May 2018
Source:Dental Materials
Author(s): H. Xia, P. Picart, S. Montresor, R. Guo, J.C. Li, O. Yusuf Solieman, J.-C. Durand, M. Fages
ObjectivesCAD/CAM ceramic occlusal veneers are increasingly used as therapeutic options. However, little is known about their mechanical behavior under stress, as the response of the prepared tooth that supports it. The aim of this article is to use for the first time 3D color holography to evaluate the behavior of a molar occlusal veneer under stress and the response of the prepared tooth.MethodsThe occlusal surface of a lower molar is prepared to receive a specific monolithic ceramic reconstruction manufactured with a chairside CAD/CAM system. Longitudinally cut samples are used to get a planar object observation and to "look inside" the tooth. A digital holographic set-up permits to obtain the contact-less and one-shot measurement of the three-dimensional displacement field at the surface of the tooth sample; stain fields are evaluated with low noise-sensitive computation.ResultsFigures show the strain fields with micro-strain units and highlight the behavior of the ROI (region of interest) in the three directions of space. The ROI are: the ceramic, the glue junction, the dentin enamel junction, dentin and enamel. The results show an excellent behavior of the restored tooth without areas of excessive stress concentrations, but also a significant involvement of the dentin enamel junction.SignificanceThe ceramic occlusal veneer seems to behave in accordance with the biomechanical concepts ensuring the longevity of the reconstituted tooth. 3D holography is a highly recommended method for studying dental biomechanics.

Graphical abstract

image


https://ift.tt/2LzDgDY

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου