Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 30 Μαΐου 2018

MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells

Publication date: 30 September 2018
Source:Biosensors and Bioelectronics, Volume 116
Author(s): Cong Li, Ruijun Wu, Juncheng Zou, Tingting Zhang, Sufang Zhang, Zhiquan Zhang, Xin Hu, Youqi Yan, Xiaomei Ling
Herein, the ternary composites, ultrasmall metal nanoparticles encapsulated in the anionic metal-organic frameworks/electrochemically reduced graphene oxide (MNPs@Y-1, 4-NDC-MOF/ERGO, M = Ag, Cu) are constructed by a cationic exchange strategy and an electrochemical reduction process for the electrochemical determination of H2O2. Both AgNPs@Y-1, 4-NDC-MOF/ERGO and CuNPs@Y-1, 4-NDC-MOF/ERGO display excellent electrocatalytic activity toward H2O2, but the former is superior to the latter. Such a difference in electrocatalytic activity can be explained by the characterization measurements, and the results manifest MNPs@Y-1, 4-NDC-MOF/ERGO (M = Ag, Cu) electrocatalysts have subequal MNPs sizes and electrochemical surface areas, but different electron transfer rate constants. The AgNPs@Y-1, 4-NDC-MOF/ERGO sensor shows a linear detection range from 4 to 11,000 μM with the detection limit of 0.18 μM. Moreover, MNPs@Y-1, 4-NDC-MOF/ERGO (M = Ag, Cu) exhibit excellent anti-interference performance and can be used for the detection of H2O2 released from living cells. The proposed sensor takes full advantage of the catalytic property of MNPs, the size selectivity of Y-1, 4-NDC-MOF, and the fast electron transport effect of ERGO. Thus, the MNPs@Y-1, 4-NDC-MOF/ERGO/GCE (M = Ag, Cu) can be utilized to detect oxidase activities by monitoring H2O2 produced in the presence of substrate and oxidase, and it is expected that composites with the molecular sieving effect and catalytic activity can be widely applied for catalysis, biomedicine, and biosensing fields.



https://ift.tt/2xrRLXF

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου