Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 31 Μαΐου 2018

Neuromuscular variability and spatial accuracy in children and older adults

1-s2.0-S1050641118300427-fx1.jpg

Publication date: August 2018
Source:Journal of Electromyography and Kinesiology, Volume 41
Author(s): Agostina Casamento-Moran, Rebecca Fleeman, Yen-Ting Chen, MinHyuk Kwon, Emily J. Fox, Basma Yacoubi, Evangelos A. Christou
Our ability to control movements is influenced by the developmental status of the neuromuscular system. Consequently, movement control improves from childhood to early adulthood but gradually declines thereafter. However, no study has compared movement accuracy between children and older adults. The purpose of this study was to compare endpoint accuracy during a fast goal-directed movement task in children and older adults. Ten pre-adolescent children (9.7 ± 0.67 yrs) and 19 older adults (71.95 ± 6.99 yrs) attempted to accurately match a peak displacement of the foot to a target (9° in 180 ms) with a dorsiflexion movement. We recorded electromyographic activity from the tibialis anterior (agonist) and soleus (antagonist) muscles. We quantified position error (i.e. spatial accuracy) as well as the coordination, magnitude, and variability of the antagonistic muscles. Children exhibited greater position error than older adults (36.4 ± 13.4% vs. 27.0 ± 9.8%). This age-related difference in spatial accuracy, was related to a more variable activation of the agonist muscle (R2: 0.358; P < 0.01). These results suggest that an immature neuromuscular system, compared to an aged one, affects the generation and refinement of the motor plan which increases the variability in the neural drive to the muscle and reduces spatial accuracy in children.



https://ift.tt/2L7NBWG

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου