Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Κυριακή 27 Μαΐου 2018

NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy

S01429612.gif

Publication date: September 2018
Source:Biomaterials, Volume 176
Author(s): Jun Yang, Shaodong Zhai, Huan Qin, He Yan, Da Xing, Xianglong Hu
Stimuli-responsive nanoparticles are focused to promote the pathological specificity and controlled therapeutic activation in biomedicine, but the multifunctional modulation remains challenging. Herein, size and morphology switchable phototheranostic nanoparticles are developed for photoacoustic (PA) imaging-guided photothermal-chemotherapy. Multifunctional polypyrrole (PPy) nanoparticles with the template of upper critical solution temperature (UCST) polymers are designed to achieve light-controlled pulsatile drug release and concurrent activation of photothermal therapy (PTT). Wherein the UCST-featured inner core is loaded with camptothecin (CPT), the outer corona is tethered with thermo-cleavable doxorubicin (DOX) prodrug and further in-situ coated with PPy, affording the resultant CPT@DOX-UCST/PPy nanoparticles. Upon 808 nm continuous laser illumination, significant heating generated from light-absorbable PPy results in DOX prodrug cleavage and considerable size swelling (∼125-fold), which in turn promotes simultaneous dual drug release, and thus triggering the combined therapeutic activation of PTT and chemotherapy. When laser is switched off, the discontinued photothermal generation makes the nanoparticle shrink back, thereby avoiding the leakage of CPT and DOX. In vivo experiments demonstrate the favorable tumor accumulation and prolonged tumor retention (>24 h) for long-term PA imaging-guided combination therapy. Current multifunctional nanoparticles integrated with light-controlled swelling/shrinking and synergistic therapeutic activation/silence represent a promising platform for precision cancer theranostics.



https://ift.tt/2GUt85k

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου