Cosmetics, Vol. 5, Pages 40: Antioxidant and Moisturizing Effect of Camellia assamica Seed Oil and Its Development into Microemulsion
Cosmetics doi: 10.3390/cosmetics5030040
Authors: Wantida Chaiyana Pimporn Leelapornpisid Jaroon Jakmunee Chawalit Korsamphan
The present study aimed to investigate the fatty acid content, and antioxidant and moisturizing effect of Camellia assamica seed oil (CA). Additionally, microemulsions containing CA were also developed for topical use. The antioxidant activity of CA and two commercial Camellia oleifera seed oils were investigated by means of 1,1-diphenyl-2-picrylhydrazy radical (DPPH) assay and lipid peroxidation by ferric thiocyanate method. Moreover, the in vitro skin moisturizing effect was investigated on stillborn piglet skin by using a Corneometer®. CA microemulsions were developed and characterized by photon correlation spectroscopy, rheometer, and heating-cooling stability tests. The results revealed that the major fatty acid components of CA were cis-9-oleic acid, cis-9,12-linoleic acid, and palmitic acid. CA had a significantly higher lipid peroxidation inhibition and DPPH scavenging capacity compared to the commercial oils (p < 0.05). Lipid peroxidation inhibition of CA was 39.2% ± 0.6% at 37.5 mg/mL and the IC50 value of DPPH assay was 70.8 ± 27.1 mg/mL. The skin moisture content after applying CA, commercial oils, and tocopheryl acetate were significantly higher than untreated skin (p < 0.05) and the moisturizing efficacy increased with time. Interestingly, radical scavenging and antioxidant effect of CA microemulsions were significantly higher than the native oil even after the stability test (p < 0.05). In conclusion, incorporating CA into microemulsion increased its antioxidant activity indicating that it would be beneficial as a cosmeceutical application for anti-aging.
https://ift.tt/2tVFUfe
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου