Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 14 Ιουλίου 2018

Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo

Abstract

Background

Ovarian cancer is a common gynecologic malignancy with poor prognosis, requiring innovative new therapeutic strategies. Temperature-controlled drug delivery to cancer cells represents a novel, promising, targeted treatment approach.

Objective

We prepared folate receptor-targeted thermosensitive liposomes wrapped with the HSP90 inhibitor 17-AAG and superparamagnetic material (17-AAG/MTSLs-FA), and tested the efficacy of these targeted magnetoliposomes in vitro and in vivo.

Methods

Magnetic thermosensitive liposomes wrapped with 17-AAG were coprecipitated with Fe3O4 magnetic nanoparticles and prepared by a rotary evaporation method. Experiments were conducted with SKOV3 human ovarian cancer cells and MCF7 human breast carcinoma cells to evaluate the anti-tumor effects.

Results

17-AAG/MTSLs-FA prepared in this study met the basic requirements for therapeutic application. The preparation method is relatively simple and the raw materials are readily available. The product exhibited strong magnetism, high encapsulation efficiencies, and satisfactory performance. The liposomes combined with hyperthermia significantly inhibited the proliferation of SKOV3 cells and induced apoptosis. Experiments using a mouse subcutaneous model as well as an ascites tumor xenograft model indicated that 17-AAG/MTSLs-FA was stable in vivo and effectively targeted tumor tissues expressing the folate receptor.

Conclusions

Folic acid-conjugated 17-AAG magnetic thermosensitive liposomes in combination with an alternating magnetic field for heating can achieve a synergistic anti-tumor effect of chemotherapy and heat treatment, potentially offering a new method for ovarian cancer treatment.



https://ift.tt/2ufSbLM

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου