Abstract
Objective
To evaluate the effect of a fluoride toothpaste containing nano-sized sodium hexametaphosphate (HMPnano) on enamel demineralization on the biochemical composition and insoluble extracellular polysaccharide (EPS) in biofilm formed in situ.
Methods
This crossover double-blind study consisted of four phases (7 days each), in which 12 volunteers wore intraoral appliances containing four enamel bovine blocks. The cariogenic challenge was performed using 30% sucrose solution (6×/day). Blocks were treated 3×/day with the following toothpastes: no F/HMP/HMPnano (Placebo), conventional fluoride toothpaste, 1100 ppm F (1100F), 1100F + 0.5% micrometric HMP (1100F/HMP), and 1100F + 0.5% nano-sized HMP (1100F/HMPnano). The percentage of surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), and enamel calcium (Ca), phosphorus (P), and fluoride (F) were determined. Moreover, biofilms formed on the blocks were analyzed for F, Ca, P, and insoluble extracellular polysaccharide (EPS) concentrations. Data were analyzed using one-way ANOVA, followed by Student–Newman–Keuls' test (p < 0.001).
Results
1100F/HMPnano promoted the lowest %SH and ΔKHN among all groups (p < 0.001). The addition of HMPnano to 1100F significantly increased Ca concentrations (p < 0.001). The 1100F/HMPnano promoted lower values of EPS when compared with 1100F (~ 70%) (p < 0.001) and higher values of fluoride and calcium in the biofilms (p < 0.001).
Conclusion
1100F/HMPnano demonstrated a greater protective effect against enamel demineralization and on the composition of biofilm in situ when compared to 1100F toothpaste.
Clinical relevance
This toothpaste could be a viable alternative to patients at high risk of caries.
https://ift.tt/2PuTtes
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου