Abstract
This study investigated the removal and translocation mechanism of cadmium (Cd) by Oudemansiella radicata (O. radicata) in mushroom-soil rhizosphere and the fruiting body of mushroom. For this, the biomass, physiochemical parameters, and Cd distribution of O. radicata were examined in the soil spiked with 0, 10, 20, and 30 mg kg−1 Cd. The soil microecology and the Cd fractionation in the soil rhizosphere were also measured. Results showed that, O. radicata possesses high capability to tolerate Cd, although its surface phenotypic structure was influenced by high concentrations of Cd. The observed concentrations of Cd in O. radicata were in the following order: root (the part of stipe in soil) > pileus > stipe. The presence of Cd led to an increase in the production of antioxidant enzymes and glutathione (GSH). These results suggested that antioxidant enzymes and GSH assisted detoxification and accumulation of Cd within the mushroom. Meanwhile, in the soil rhizosphere, the concentrations of oxalic, citric, and malic acids were enhanced with the treatment of Cd, indicating that the production of these acids was closely related to the presence of Cd in soils. Additionally, the proportion of acid-soluble Cd was increased and the soil microecology (microbial counts, urease, and acid phosphatase activities) also enhanced with the inoculation of O. radicata. Overall, this study demonstrated that O. radicata is a promising candidate for the remediation of Cd-contaminated soil.
http://bit.ly/2AxWpCx
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου