Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 9 Ιανουαρίου 2019

Real-time monitoring and quantification of organic by-products and mechanism study of acetone decomposition in a dielectric barrier discharge reactor

Abstract

Non-thermal plasma (NTP) degradation of low-concentration acetone was investigated in a cylindrical dielectric barrier discharge reactor. The effects of oxygen content and flow rate on the removal efficiency at various discharge powers were examined in real-time. The acetone removal efficiency decreases drastically and then remains stable or increases gradually as the O2 content increases from 0 to 25%, and further to 50%. The organic by-products were characterized and quantified using a real-time proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) instrument. The observed organic compounds, with concentrations about ppbv/ppmv by volume, were mainly formaldehyde, methanol, ketene, acetaldehyde, formic acid, acetone, and acetic acid. The discharge power was a critical factor affecting the concentration of the organic by-products and the selectivity toward CO2. The mechanism study based on the by-product monitor in real-time showed that acetone firstly fragments into methyl radicals, acetyl radicals, and H; then, the methyl and acetyl radicals are oxidized by O or OH radicals into acetaldehyde, methanol, and other compounds. It seems that acetaldehyde could be an intermediate in acetone decomposition. Firstly, most of the acetone molecules were decomposed into acetaldehyde molecules; then, the acetaldehyde molecules continued to be decomposed and oxidized into other compounds, such as acetic acid and formaldehyde. These investigations not only proposed a detail decomposition mechanism for acetone in dielectric barrier discharge reactor, but also provided a potential way to analyze and evaluate the practicability of NTP removal of VOCs.



http://bit.ly/2TCa6Y7

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου