Abstract
Hypothalamic kisspeptin is a known principal activator of gonadotropin-releasing hormone neurons and governs the hypothalamic-pituitary-gonadal axis. Previous reports have shown that kisspeptin is also released into the hypophyseal portal circulation and directly affects the anterior pituitary. In this study, we examined the direct effect of kisspeptin on pituitary prolactin-producing cells. The rat pituitary somatolactotroph cell line GH3 expresses the kisspeptin receptor (Kiss1R); however, in these cells, kisspeptin failed to stimulate prolactin-promoter activity. When GH3 cells overexpressed Kiss1R, kisspeptin clearly increased prolactin-promoter activity, with a concomitant increase in extracellular signal-regulated kinase (ERK) and cAMP/protein kinase A (PKA) signaling pathways. In the experiments using GH3 cells overexpressing Kiss1R, kisspeptin did not potentiate thyrotropin-releasing hormone (TRH)-induced prolactin-promoter activity, but it potentiated the pituitary adenylate cyclase-activating polypeptide-induced prolactin-promoter activity, with a concomitant enhancement of ERK and PKA signaling pathways. Although the basal and TRH-induced prolactin-promoter activities were not modulated by increasing amounts of Kiss1R expression in GH3 cells, kisspeptin-stimulated prolactin-promoter activity was increased by the amount of Kiss1R overexpression. Endogenous Kiss1r mRNA expression in GH3 cells was significantly increased by treatment with estradiol (E2) but not by TRH. In addition, kisspeptin's ability to stimulate prolactin-promoter activity was restored after E2 treatment in non-transfected GH3 cells. Our current observations suggest that kisspeptin might have a direct effect on prolactin expression in the anterior pituitary prolactin-producing cells under the influence of E2, which may regulate Kiss1R expression and function.
http://bit.ly/2M5hdG7
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου