Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, "natural" oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells.
from #Medicine-SfakianakisAlexandros via o.lakala70 on Inoreader http://ift.tt/1P6Owkk
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1SfUTZ8
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1N4Tc93
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1ZYqQXi
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου