Publication date: 1 July 2016
Source:Colloids and Surfaces B: Biointerfaces, Volume 143
Author(s): B. Chaudhuri, B. Mondal, S.K. Ray, S.C. Sarkar
We have prepared biocompatible composites of 80wt% polyvinyl alcohol (PVA)-(20wt%) polyvinylpyrrolidone (PVP) blend with different concentrations of bioactive nanohydroxyapatite, Ca10(PO4)6(HO)2 (HAP). The composite films demonstrated maximum effective conductivity (σ∼1.64×10−4S/m) and effective dielectric constant (ε∼290) at percolation threshold concentration (∼10wt% HAP) at room temperature. These values of σ and ε are much higher than those of PVA, PVP or HAP. Our preliminary observation indicated excellent biocompatibility of the electrospun fibrous meshes of two of these composites with different HAP contents (8.5 and 5wt% within percolation threshold concentration) using NIH 3T3 fibroblast cell line. Cells viability on the well characterized composite fibrous scaffolds was determined by MTT [3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay analysis. Enhancement of σ, due to HAP addition, was found to show increased biocompatibility of the fibrous scaffold. Enhanced σ value of the PVA/PVP-HAP composite provided supporting cues for the increased cell viability and biocompatibility of the composite fibrous meshes. Excellent biocompatibility these electrospun composite scaffolds made them to plausible potential candidates for tissue engineering or other biomedical applications.
Graphical abstract
from #Medicine-SfakianakisAlexandros via o.lakala70 on Inoreader http://ift.tt/1T1EKH1
via IFTTT Medicine by Alexandros G.Sfakianakis,Anapafseos 5 Agios Nikolaos,Crete 72100,Greece,tel :00302841026182 & 00306932607174
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1RtGsvg
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1LxCk1a
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου