Publication date: 1 July 2016
Source:Colloids and Surfaces B: Biointerfaces, Volume 143
Author(s): Qiwei Zhong, Wenhua Li, Xiuping Su, Geng Li, Ying Zhou, Subhas C. Kundu, Juming Yao, Yurong Cai
Despite superior clinical handling, excellent biocompatibility, biodegradation property of calcium phosphate needs to be improved to coincide with the rate of new bone formation. In this study, spherical CaCO3 are fabricated in the presence of the silk sericin and then transformed into porous hydroxyapatite (HAP) microspheres via hydrothermal method. The degradation behavior of obtained CaCO3, HAP and their mixture is first investigated in vitro. The result demonstrates that the weight loss of HAP microspheres are almost 24.3% after immersing in pH 7.40 Tris-HCl buffer solution for 12 weeks, which is far slower than that of spherical CaCO3 (97.5%). The degradation speed of the mixtures depends on the proportion of CaCO3 and HAP. The mixture with higher content of CaCO3 possesses a quicker degradation speed. The obtained CaCO3 and HAP microspheres are injected into subcutaneous tissue of ICR mice with the assistance of sodium alginate. The result in vivo also shows an obvious difference of degradation speed between the obtained CaCO3 and HAP microspheres, implying it is feasible to modulate the degradation property of the mixture through changing the proportion of CaCO3 and HAP The good cytocompatibility of the two kinds of microspheres is proved and a mild inflammation response is observed only at early stage of implantation. The job offers a simple method to modify the degradation properties of biomaterial for potential use in bone tissue engineering.
Graphical abstract
from #Medicine-SfakianakisAlexandros via o.lakala70 on Inoreader http://ift.tt/1T1EO9B
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1LxCk1e
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου