via NeuroImage
Publication date: 1 October 2016
Source:NeuroImage, Volume 139
Author(s): Thomas Alderliesten, Jill B. De Vis, Petra M.A. Lemmers, Frank van Bel, Manon J.N.L. Benders, Jeroen Hendrikse, Esben T. Petersen
Background and aimDisturbances in cerebral oxygenation saturation (SO2) have been linked to adverse outcome in adults, children, and neonates. In intensive care, the cerebral SO2 is increasingly being monitored by Near-InfraRed Spectroscopy (NIRS). Unfortunately NIRS has a limited penetration depth. The "modified T2-prepared Blood Imaging of Oxygen Saturation" (T2-BIOS) MR sequence provides a step towards full brain SO2 measurement.Materials and methodsTissue SO2, and venous SO2 (SvO2) were obtained simultaneously by T2-BIOS during a respiratory challenge in ten healthy volunteers. These two measures were compared to SO2 that was obtained by a single probe MR-compatible NIRS setup, and to cerebral blood flow and venous SO2 that were obtained by arterial spin labelling and T2-TRIR, respectively.ResultsSO2-T2-BIOS and SO2-NIRS had a mean bias of −4.0% (95% CI −21.3% to 13.3%). SvO2-T2-BIOS correlated with SO2-NIRS (R2=0.41, p=0.002) and SvO2-T2-TRIR (R2=0.87, p=0.002). In addition, SO2-NIRS correlated with SvO2-T2-TRIR (R2=0.85, p=0.003) Frontal cerebral blood flow correlated with SO2-T2-BIOS (R2=0.21, p=0.04), but was not significant in relation to SO2-NIRS.Discussion/conclusionFull brain SO2 assessment by any technique may help validating NIRS and may prove useful in guiding the clinical management of patient populations with cerebral injury following hypoxic-ischaemic events. The agreement between NIRS and T2-BIOS provides confidence in measuring cerebral SO2 by either technique. As it stands now, the T2-BIOS represents a novel idea and future work will focus on improvements to make it a reliable tool for SO2 assessment.
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/28KRkXX
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου