Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 15 Φεβρουαρίου 2017

Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes

Publication date: 14 February 2017
Source:Cell Reports, Volume 18, Issue 7
Author(s): Julia H. Kreznar, Mark P. Keller, Lindsay L. Traeger, Mary E. Rabaglia, Kathryn L. Schueler, Donald S. Stapleton, Wen Zhao, Eugenio I. Vivas, Brian S. Yandell, Aimee Teo Broman, Bruno Hagenbuch, Alan D. Attie, Federico E. Rey
Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion.

Graphical abstract

image

Teaser

Host genetics modulates the development of metabolic disease and shapes the composition of the gut microbiota. Kreznar et al. demonstrate that the gut microbiota contributes to strain-specific susceptibility to diet-induced metabolic disease and identify links between microbial metabolism and insulin secretion.


http://ift.tt/2kRULny

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου