Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 18 Φεβρουαρίου 2017

Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy.

Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy.

Oncotarget. 2017 Feb 15;:

Authors: Edelman R, Assaraf YG, Levitzky I, Shahar T, Livney YD

Abstract
Multiple carcinomas including breast, ovarian, colon, lung and stomach cancer, overexpress the hyaluronic acid (HA) receptor, CD44. Overexpression of CD44 contributes to key cancer processes including tumor invasion, metastasis, recurrence, and chemoresistance. Herein, we devised novel targeted nanoparticles (NPs) for delivery of anticancer chemotherapeutics, comprised of self-assembling Maillard reaction-based conjugates of HA and bovine serum albumin (BSA). HA served as the hydrophilic block, and as the ligand for actively targeting cancer cells overexpressing CD44. We demonstrate that Maillard reaction-based covalent conjugates of BSA-HA self-assemble into NPs, which efficiently entrap hydrophobic cytotoxic drugs including paclitaxel and imidazoacridinones. Furthermore, BSA-HA conjugates stabilized paclitaxel and prevented its aggregation and crystallization. The diameter of the NPs was < 15 nm, thus enabling CD44 receptor-mediated endocytosis. These NPs were selectively internalized by ovarian cancer cells overexpressing CD44, but not by cognate cells lacking this HA receptor. Moreover, free HA abolished the endocytosis of drug-loaded BSA-HA conjugates. Consistently, drug-loaded NPs were markedly more cytotoxic to cancer cells overexpressing CD44 than to cells lacking CD44, due to selective internalization, which could be competitively inhibited by excess free HA. Finally, a CD44-targeted antibody which blocks receptor activity, abolished internalization of drug-loaded NPs. In conclusion, a novel cytotoxic drug-loaded nanomedicine platform has been developed, which is based on natural biocompatible biopolymers, capabale of targeting cancer cells with functional surface expression of CD44.

PMID: 28212584 [PubMed - as supplied by publisher]



http://ift.tt/2lXCCTX

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου