Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Κυριακή 30 Απριλίου 2017

Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.

http:--production.springer.de-OnlineReso Related Articles

Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.

Ann Biomed Eng. 2016 Oct;44(10):3136-43

Authors: Kim D, Lim JY, Kwon S

Abstract
The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.

PMID: 26951463 [PubMed - indexed for MEDLINE]



http://ift.tt/2qhQn4U

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου