Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 28 Ιουνίου 2017

Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite

Abstract

The pesticide gibberellic acid (GA3) is a potential endocrine disruptor and environmental toxin; therefore, research into its environmental fate is warranted. Batch studies were conducted to investigate the sorption and desorption characteristics of GA3 on aquifer media. The results demonstrated special sorption characteristic of GA3 on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite, where the sorption kinetics of GA3 on ferrihydrite was fitted well with the pseudo-second-order, Elovich, and intra-particle diffusion models. The sorption kinetics of GA3 on ferrihydrite indicated an initial high sorption rate followed by a slow reaction process. The initial high GA3 sorption rate may be related to electrostatic sorption and surface complexation reactions on the outer surfaces and at the macropore entrances of ferrihydrite. While the slow step was controlled by GA3 diffusion into mesopore of ferrihydrite. Analysis of the desorption hysteresis indicated a high hysteresis index (HI) ranging from 0.68 to 17.32, and a low desorption percentage ranging from 18 to 48%. After sufficient desorption, the calculated maximum residual GA3 quantity due to surface complexation reactions with the ferrihydrite coordinated unsaturated sites was 9.05 ± 0.12 mg g−1. The calculated maximum quantity of GA3 trapped within the mesopore was 16.23 ± 0.91 mg g−1.

Graphical Abstract

Schematic overview of GA3 sorption and desorption on five minerals in groundwater


http://ift.tt/2tlrwij

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου