Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 5 Αυγούστου 2017

A multidimensional design of charge transfer interfaces via D–A–D linking fashion for electrophysiological sensing of neurotransmitters

Publication date: 15 January 2018
Source:Biosensors and Bioelectronics, Volume 99
Author(s): He Liu, Chaoyi Liu, Yue Gu, Cong Li, Xiaoyi Yan, Tingting Zhang, Nannan Lu, Bo Zheng, Yaru Li, Zhiquan Zhang, Ming Yang
Donor–Acceptor (D–A) structure like host-guest pair serves as an organic charge–transfer (C–T) material with pregnant electrochemical and photochemical properties. Phenothiazine, a conjugated nitrogen-sulfur heterocyclic compound with broad pharmaceutical profile, is a strong electron donating system and applied in the synthesis of various classic antipsychotic drugs. In this proposal, a novel D–A molecule, 2,3-bis(4-(10H-phenothiazin-10-yl)phenyl)fumaronitrile (PTBFN), containig a diphenylfumaronitrile as the electrophilic central core and two phenothiazines as the peripheral electron donor functional groups is first designed and synthesized. Subsequently, the C–T layer based on the PTBFN polymer, poly(PTBFN), is obtained via a straightforward electrochemical method and used as an efficient electrocatalyst for dopamine (DA) detection. The logarithm of oxidation peak currents present an outstanding linear response to that of the DA concentration varying from 0.005 to 350μM with a detection limit down to 0.70nM, wherein the interferences of uric acid (UA) and ascorbic acid (AA) could be eliminated effectively. Moreover, the biosensor displays decent stability, excellent selectivity for different interfering compounds and applicability in real samples analysis. The favorable sensing performance suggests that the nontrivial D–A architecture is one of the promising bioaffinity catalysts for electrocatalysis and expected to provide wider application potential for biosensing construction and medical diagnostics.



http://ift.tt/2wutfQa

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου