Publication date: Available online 30 August 2017
Source:Cell Stem Cell
Author(s): Fengyin Li, Bing He, Xiaoke Ma, Shuyang Yu, Rupali R. Bhave, Steven R. Lentz, Kai Tan, Monica L. Guzman, Chen Zhao, Hai-Hui Xue
Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34+ stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML.
Graphical abstract
Teaser
Xue and colleagues show that prostaglandin E1 (PGE1) inhibits the activity and self-renewal of human CML leukemic stem cells. Combination of PGE1 or an agonist for its receptor EP4 with conventional tyrosine kinase inhibitor treatment can effectively target CML leukemic stem cells and reduce leukemia growth.http://ift.tt/2iIvpcT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου