Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 9 Σεπτεμβρίου 2017

Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes

Publication date: Available online 8 September 2017
Source:The Journal of Steroid Biochemistry and Molecular Biology
Author(s): Véréna Landel, Delphine Stephan, Xiaoying Cui, Darryl Eyles, François Feron
Accumulating evidence indicates that the active form of vitamin D, 1,25(OH)2D3, can be considered as a neurosteroid. However, the cerebral expression of vitamin D-associated enzymes and receptors remains controversial. With the idea of carrying out a comparative study in mind, we compared the transcript expression of Cyp27a1, Cyp27b1, Cyp24a1, Vdr and Pdia3 in purified cultures of astrocytes, endothelial cells, microglia, neurons and oligodendrocytes. We observed that endothelial cells and neurons can possibly transform the inactive cholecalciferol into 25(OH)D3. It can then be metabolised into 1,25(OH)2D3, by neurons or microglia, before being transferred to astrocytes where it can bind to VDR and initiate gene transcription or be inactivated when in excess. Alternatively, 1,25(OH)2D3 can induce autocrine or paracrine rapid non-genomic actions via PDIA3 whose transcript is abundantly expressed in all cerebral cell types. Noticeably, brain endothelial cells appear as a singular subtype as they are potentially able to transform cholecalciferol into 25(OH)D3 and exhibit a variable expression of Pdia3, according to 1,25(OH)2D3 level. Altogether, our data indicate that, within the brain, vitamin D may trigger major auto-/paracrine non genomic actions, in addition to its well documented activities as a steroid hormone.

Graphical abstract

image


http://ift.tt/2vWO8Yk

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου