Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 4 Οκτωβρίου 2017

Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels

S01969781.gif

Publication date: Available online 3 October 2017
Source:Peptides
Author(s): Fan Yang, Shuang Liu, Yaoyun Zhang, Chenhu Qin, Lingna Xu, Wenhua Li, Zhijian Cao, Wenxin Li, Yingliang Wu
Scorpion toxins are invaluable pharmacological tools for studying ion channels and potential drugs for channelopathies. The long-chain toxins from scorpion venom with four disulfide bridges exhibit their unusual bioactivity or biotoxicity by acting on the sodium channels. However, the functional properties of most toxins are still unclear due to their tiny amounts in crude venom and their challenging production by chemical and gene engineering techniques. Here, we expressed one of the long-chain α-toxins, BmKM9, found in the venom of the scorpion Buthus martensii Karsch and characterized its pharmacological properties on sodium channels. Unlike previous toxin production, the recombinant BmKM9 (rBmKM9) possessed no additional amino acid residues such as the His-tag and thrombin cleavage site. The refolded toxin could inhibit the inactivation of rNav1.4, hNav1.5 and hNav1.7 sodium channels. Dose-response experiments were further conducted on these channels. The calculated EC50 values were 131.7±6.6nM for rNav1.4, 454.2±50.1nM for hNav1.5 and 30.9±10.3μM for hNav1.7. The channel activation experiments indicated that the rBmKM9 toxin could shift the activation curves of rNav1.4 and hNav1.5 channels toward a more negative direction and present the typical features of a β-toxin. However, instead of the same activation property on sodium channels, the rBmKM9 toxin could result in different inactivation shift capabilities on rNav1.4 and hNav1.5 channels. The V1/2 values of the steady-state inactivation were altered to be more positive for rNav1.4 and more negative for hNav1.5. Moreover, the recovery of the hNav1.5 channel from inactivation was more significantly delayed than that of the rNav1.4 channel by exposure to rBmKM9. Together, these findings highlighted that the rBmKM9 toxin presents the pharmacological properties of both α- and β-toxins, which would increase the challenge to the classical classification of scorpion toxins. Furthermore, the expression method and functional information on sodium channels would promote the potential application of toxins and contribute to further channel structural and functional studies.



http://ift.tt/2hPjQ3P

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου