Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 6 Δεκεμβρίου 2017

Hollow Mesoporous Zirconia Delivery System for Biomineralization Precursors

Publication date: Available online 6 December 2017
Source:Acta Biomaterialia
Author(s): Xue-qing Huang, Hong-ye Yang, Tao Luo, Cui Huang, Franklin R. Tay, Li-na Niu
Strategies based on the combination of nanocarrier delivery systems and scaffolds provide bone tissue engineering scaffolds with multifunctional capability. Zirconia, a biocompatible ceramic commonly used in orthopedic and dental implants, was used to synthesize hollow mesoporous nanocapsules for loading, storage and sustained release of a novel polyamine-stabilized liquid precursor phase of amorphous calcium phosphate (PAH-ACP) for collagen biomineralization and bone marrow stromal cells osteoinduction. Hollow mesoporous zirconia (hmZrO2) nanocapsules loaded with biomimetic precursors exhibited pH-sensitive release capability and good biocompatibility. The PAH-ACP released from loaded hmZrO2 still retained the ability to infiltrate and mineralize collagen fibrils as well as exhibited osteoinductivity. A collagen scaffold blended with PAH-ACP@hmZrO2 supplement and stem cells may be a promising tool for bone tissue engineering.Statement of SignificanceThe advent of nanotechnology has catalyzed the development of bone tissue engineering strategies based on the combination of nanocarrier delivery systems and scaffolds, which provide distinct advantages, including the possibilities of sustained release and protection of the bioactive agents, site-specific pharmacological effects and reduction of side effects. Herein, hollow mesoporous zirconia (hmZrO2) nanocapsules with pH-sensitive capacity were synthesized for loading, storage and sustained release of a novel polyamine-stabilized liquid precursor phase of ACP (PAH-ACP). The loaded nanocapsules show good biocompatibility and demonstrate bioactivities for collagen biomineralization and bone marrow stromal cells osteoinduction. Our results may offer a promising tool for designing bone tissue engineering "cocktail therapy" involving seeding scaffolds with biomineralization precursors loaded hmZrO2 supplement and stem cells.

Graphical abstract

image


http://ift.tt/2B3aE44

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου