Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 22 Ιανουαρίου 2018

Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1 [IMMUNE SYSTEM DEVELOPMENT]

The developmental fate of hematopoietic stem and progenitor cells is influenced by their physiological context. Although most hematopoietic stem and progenitor cells are found in the bone marrow of the adult, some are found in other tissues, including the spleen. The extent to which the fate of stem cells is determined by the tissue in which they reside is not clear. In this study, we identify a new progenitor population, which is enriched in the mouse spleen, defined by cKit+CD71lowCD24high expression. This previously uncharacterized population generates exclusively myeloid lineage cells, including erythrocytes, platelets, monocytes, and neutrophils. These multipotent progenitors of the spleen (MPPS) develop from MPP2, a myeloid-biased subset of hematopoietic progenitors. We find that NR4A1, a transcription factor expressed by myeloid-biased long term-hematopoietic stem cells, guides the lineage specification of MPPS. In vitro, NR4A1 expression regulates the potential of MPPS to differentiate into erythroid cells. MPPS that express NR4A1 differentiate into a variety of myeloid lineages, whereas those that do not express NR4A1 primarily develop into erythroid cells. Similarly, in vivo, after adoptive transfer, Nr4a1-deficient MPPS contribute more to erythrocyte and platelet populations than do wild-type MPPS. Finally, unmanipulated Nr4a1–/– mice harbor significantly higher numbers of erythroid progenitors in the spleen compared with wild-type mice. Together, our data show that NR4A1 expression by MPPS limits erythropoiesis and megakaryopoeisis, permitting development to other myeloid lineages. This effect is specific to the spleen, revealing a unique molecular pathway that regulates myeloid bias in an extramedullary niche.



http://ift.tt/2DwCOWP

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου