CD22 and sialic acid–binding Ig-like lectin (Siglec)-G are members of the Siglec family of inhibitory coreceptors expressed on B cells that participate in enforcement of peripheral B cell tolerance. We have shown previously that when a BCR engages its cognate Ag on a cell surface that also expresses Siglec ligands, B cell Siglecs are recruited to the immunological synapse, resulting in suppression of BCR signaling and B cell apoptosis. Because all cells display sialic acids, and CD22 and Siglec-G have distinct, yet overlapping, specificities for sialic acid–containing glycan ligands, any cell could, in principle, invoke this tolerogenic mechanism for cell surface Ags. However, we show in this article that C57BL/6J mouse RBCs are essentially devoid of CD22 and Siglec-G ligands. As a consequence, RBCs that display a cell surface Ag, membrane-bound hen egg lysozyme, strongly activate Ag-specific B cells. We reasoned that de novo introduction of CD22 ligands in RBCs should abolish B cell activation toward its cognate Ag on the surface of RBCs. Accordingly, we used a glyco-engineering approach wherein synthetic CD22 ligands linked to lipids are inserted into the membrane of RBCs. Indeed, insertion of CD22 ligands into the RBC cell surface strongly inhibited B cell activation, cytokine secretion, and proliferation. These results demonstrate that the lack of Siglec ligands on the surface of murine RBCs permits B cell responses to erythrocyte Ags and show that Siglec-mediated B cell tolerance is restricted to cell types that express glycan ligands for the B cell Siglecs.
http://ift.tt/2DvK7hn
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου