Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 5 Ιανουαρίου 2018

Mesoporous Silica Nanoparticles Decorated with Polycationic Dendrimers for Infection Treatment

Publication date: Available online 5 January 2018
Source:Acta Biomaterialia
Author(s): Blanca González, Montserrat Colilla, Jaime Díez, Daniel Pedraza, Marta Guembe, Isabel Izquierdo-Barba, María Vallet-Regí
This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies.Statement of significanceSeeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial dosages. The novelty and originality of this manuscript relies on proving that the synergistic combination of bacteria-targeting and antimicrobial agents into a unique nanosystem provokes a remarkable antimicrobial effect against bacterial biofilm.

Graphical abstract

image


http://ift.tt/2qsk5Wh

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου