Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 22 Φεβρουαρίου 2018

Arterial Phantoms with Regional Variations in Wall Stiffness and Thickness

1-s2.0-S0301562918X00039-cov150h.gif

Publication date: April 2018
Source:Ultrasound in Medicine & Biology, Volume 44, Issue 4
Author(s): Adrian J.Y. Chee, Billy Y.S. Yiu, Chung Kit Ho, Alfred C.H. Yu
Regional wall stiffening and thickening are two common pathological features of arteries. To account for these two features, we developed a new arterial phantom design framework to facilitate the development of vessel models that contain a lesion segment whose wall stiffness and thickness differ from those of other segments. This new framework is based on multi-part injection molding principles that sequentially casted the lesion segment and the flank segments of the vessel model using molding parts devised with computer-aided design tools. The vessel-mimicking material is created from polyvinyl alcohol cryogel, and its acoustic properties are similar to those of arteries. As a case demonstration, we fabricated a stenosed three-segment phantom composed of a central lesion segment (5.1-mm diameter, 1.95-mm wall thickness, 212.6-kPa elastic modulus) and two flank segments (6.0-mm diameter, 1.5-mm wall thickness, 133.7-kPa elastic modulus). B-mode imaging confirmed the difference in thickness between the lesion segment and flank segments of the phantom. Also, Doppler-based vessel wall displacement analysis revealed that when pulsatile flow was fed through the phantom (carotid pulse; 27 mL/s peak flow rate), the lesion segment distended less compared with the flank segments. Specifically, the three-beat averaged peak wall displacement in the lesion segment was measured as 0.28 mm, and it was significantly smaller than that of the flank segments (0.60 mm). It is anticipated that this new multi-segment arterial phantom can serve as a performance testbed for the evaluation of local arterial stiffness estimation algorithms.



http://ift.tt/2EKVHWp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου