Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 3 Φεβρουαρίου 2018

Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo

elsevier-non-solus.png

Publication date: 15 May 2018
Source:Biosensors and Bioelectronics, Volume 105
Author(s): Chul Soon Park, Tai Hwan Ha, Moonil Kim, Naren Raja, Hui-suk Yun, Mi Jeong Sung, Oh Seok Kwon, Hyeonseok Yoon, Chang-Soo Lee
Alkaline phosphatase (ALP) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of ALP. ALP cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified ALP activity from 0 to 1.0UmL−1 with a 10−5−10−3UmL−1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe ALP activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous ALP in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based ALP detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored ALP signal changes using a confocal imaging system. Our results suggest the possibility of early-stage ALP detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds.



http://ift.tt/2s2fBqf

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου