Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 16 Φεβρουαρίου 2018

Investigation of Adhesive Interactions in the Specific Targeting of Triptorelin-conjugated PEG-coated Magnetite Nanoparticles to Breast Cancer Cells

Publication date: Available online 16 February 2018
Source:Acta Biomaterialia
Author(s): Jingjie Hu, Sina Youssefian, John Obayemi, Karen Malatesta, Nima Rahbar, Winston Soboyejo
The understanding of adhesive interaction at the nanoscale between functionalized nanoparticles and biological cells is of great importance to develop effective theranostic nanocarriers for targeted cancer therapy. Here, we report a combination of experimental and computational approaches to evaluate the adhesion between Triptorelin (a Luteinizing Hormone-Releasing Hormone (LHRH) agonist)-conjugated poly-(ethylene glycol) (PEG)-coated magnetite nanoparticles (Triptorelin-MNPs) and breast cells. The adhesion forces between Triptorelin-MNPs and normal/cancerous breast cells are obtained using atomic force microscopy. The corresponding work of adhesion is then estimated using Johnson-Kendall-Roberts model. Our results demonstrate that Triptorelin-MNPs have a fourteen-fold greater work of adhesion to breast cancer cells than to normal breast cells. In addition, the work of adhesion between Triptorelin-MNPs and breast cancer cells is found to be three times more than that between unmodified MNPs and breast cancer cells. Hence, the experimental observation indicates that Triptorelin ligands facilitate the specific targeting of breast cancer cells. Furthermore, molecular dynamics simulations are performed to investigate the molecular origins of the adhesive interactions. The simulations reveal that the interactions between molecules (e.g. Triptorelin and PEG) and LHRH receptors are dominated by van der Waals energies, while the interactions of these molecules with cell membrane are dominated by electrostatic interactions. Moreover, both experimental and computational results reveal that PEG serves as an effective coating that enhances adhesive interactions to breast cancer cells that over-express LHRH receptors, while reduces the adhesion to normal breast cells. Our results highlight the potential to develop Triptorelin-MNPs into tumor-specific MRI contrast agents and drug carriers.Statement of SignificanceSystematic investigation of adhesive interactions between functionalized nanoparticles and cancer cells is of great importance in developing effective theranostic nanocarriers for targeted cancer therapy. Herein, we use a combination of atomic force microscopy technique and molecular dynamics simulations approach to explore the adhesive interactions at the nanoscale between Triptorelin-conjugated polyethylene glycol (PEG)-coated magnetite nanoparticles and normal/cancerous breast cells. This study characterizes and quantifies the work of adhesion, as well as adhesion forces, at the nanocarrier/cell interfaces, unravels the molecular origins of adhesive interactions and highlights the effectiveness of PEG coatings and Triptorelin ligands in the specific targeting of breast cancer cells. Our findings expand the fundamental understanding of nanoparticle/cell adhesion and provide guidelines for the design of more rational nanocarriers.

Graphical abstract

image


http://ift.tt/2GmXPQJ

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου