Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system).
Artif Cells Nanomed Biotechnol. 2018 Mar 07;:1-11
Authors: Netala VR, Bukke S, Domdi L, Soneya S, G Reddy S, Bethu MS, Kotakdi VS, Saritha KV, Tartte V
Abstract
The present study reports the biosynthesis of silver nanoparticles (IH-AgNPs) using aqueous leaf extract of Indigofera hisruta L. The biosynthesized IH-AgNPs were found to be FCC crystals, 5-10 nm in size, spherical in shape and stable. The biosynthesized IH-AgNPs showed dose-dependant cytotoxicity against prostate cancer (PC3) (IC50 = 68.5 μg/mL), colon cancer (COLO205) (IC50 = 85.2 μg/mL), and mouse melanoma (B16F10) (IC50 = 80.9 μg/mL). IH-AgNPs were found to be nontoxic towards normal CHO (Chinese hamster ovary) cells. The biosynthesized IH-AgNPs showed effective in vitro antioxidant activity against DPPH (IC50 = 63.43 μg/mL) and H2O2 (IC50 = 89.93 μg/mL) radicals. IH-AgNPs exhibited effective antibacterial activity against both Gram+ve and Gram-ve bacteria. MIC values of IH-AgNPs against S. aureus, B. subtilis, P. aeruginosa and E. coli were found to be 7.8 μg/mL, 3.9 μg/mL, 15.6 μg/mL and 15.6 μg/mL respectively. IH-AgNPs also showed inhibitory activity against fungal pathogens including C. albicans, C. nonalbicans and C. tropicalis. Considering the results together, we demonstrate that IH-AgNPs exhibits three different bioactivities (3-in-1 system) and they could be employed as future antimicrobial, antioxidant and anticancer agents/drug delivery vehicles in the field of biomedicine.
PMID: 29513113 [PubMed - as supplied by publisher]
http://ift.tt/2FkDQGi
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου