Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 30 Μαρτίου 2018

Experimental investigation of tread wear and particle emission from tyres with different treadwear marking

Publication date: June 2018
Source:Atmospheric Environment, Volume 182
Author(s): Theodoros Grigoratos, Mats Gustafsson, Olle Eriksson, Giorgio Martini
The Treadwear Rating (TWR) provided on the sidewall of the tyre is a marking intended to inform the customer about the expected durability of the tyre. The current study explores whether there is a correlation between the TWR and tyres' tread mass loss. Furthermore, it explores the possible correlation between the TWR and tyre wear dust emitted in the form of PM10 and PM2.5. For that reason, two tyres of the same brand (B) but with different TWR and three tyres of different brands (C and D with the same TWR as one of the B tyres and A with a lower TWR) were tested at a constant speed of 70 km/h by means of the Swedish National Road and Transport Research Institute (VTI) road simulator. Tyres of the same TWR but of different brands showed different behaviour in terms of material loss, PM, and PN emissions under the selected testing conditions. This means that it is not feasible to categorize tyres of different brands in terms of their emissions based on their TWR. The test performed on the two tyres of the same brand but with different TWR showed instead a substantial (not statistically significant) difference in both total wear and PM10 emissions. The tyre with the higher TWR (B2) showed less wear and PM10 emissions compared to the B1 tyre having a lower TWR. Since only two tyres of the same brand and with different TWR were tested, this result cannot be generalized and more tests are necessary to confirm the relation within the same brand. In general, the tyre tread mass loss showed no obvious statistical relation to PM10, PM2.5 or PN concentration. In all cases approximately 50% (by mass) of emitted PM10 fall within the size range of fine particles, while PN size distribution is dominated by nanoparticles most often peaking at 20–30 nm.



https://ift.tt/2GX7RcE

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου