Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 3 Απριλίου 2018

Hepatic Steatosis Assessment with Ultrasound Small-Window Entropy Imaging

S03015629.gif

Publication date: Available online 2 April 2018
Source:Ultrasound in Medicine & Biology
Author(s): Zhuhuang Zhou, Dar-In Tai, Yung-Liang Wan, Jeng-Hwei Tseng, Yi-Ru Lin, Shuicai Wu, Kuen-Cheh Yang, Yin-Yin Liao, Chih-Kuang Yeh, Po-Hsiang Tsui
Nonalcoholic fatty liver disease is a type of hepatic steatosis that is not only associated with critical metabolic risk factors but can also result in advanced liver diseases. Ultrasound parametric imaging, which is based on statistical models, assesses fatty liver changes, using quantitative visualization of hepatic-steatosis–caused variations in the statistical properties of backscattered signals. One constraint with using statistical models in ultrasound imaging is that ultrasound data must conform to the distribution employed. Small-window entropy imaging was recently proposed as a non–model-based parametric imaging technique with physical meanings of backscattered statistics. In this study, we explored the feasibility of using small-window entropy imaging in the assessment of fatty liver disease and evaluated its performance through comparisons with parametric imaging based on the Nakagami distribution model (currently the most frequently used statistical model). Liver donors (n = 53) and patients (n = 142) were recruited to evaluate hepatic fat fractions (HFFs), using magnetic resonance spectroscopy and to evaluate the stages of fatty liver disease (normal, mild, moderate and severe), using liver biopsy with histopathology. Livers were scanned using a 3-MHz ultrasound to construct B-mode, small-window entropy and Nakagami images to correlate with HFF analyses and fatty liver stages. The diagnostic values of the imaging methods were evaluated using receiver operating characteristic curves. The results demonstrated that the entropy value obtained using small-window entropy imaging correlated well with log10(HFF), with a correlation coefficient r = 0.74, which was higher than those obtained for the B-scan and Nakagami images. Moreover, small-window entropy imaging also resulted in the highest area under the receiver operating characteristic curve (0.80 for stages equal to or more severe than mild; 0.90 for equal to or more severe than moderate; 0.89 for severe), which indicated that non–model-based entropy imaging—using the small-window technique—performs more favorably than other techniques in fatty liver assessment.



https://ift.tt/2JeKBYA

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου