Related Articles |
A quantitative experimental phantom study on MRI image uniformity.
Dentomaxillofac Radiol. 2018 May 02;:20180077
Authors: Felemban D, Verdonschot RG, Iwamoto Y, Uchiyama Y, Kakimoto N, Kreiborg S, Murakami S
Abstract
PURPOSE: Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA).
METHODS: Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method.
RESULTS: Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals).
CONCLUSIONS: Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
PMID: 29718695 [PubMed - as supplied by publisher]
https://ift.tt/2KzdU8L
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου