Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 30 Μαΐου 2018

Concentration characteristics, source apportionment, and oxidative damage of PM 2.5 -bound PAHs in petrochemical region in Xinjiang, NW China

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their potential as human carcinogens. Thus, determining the characteristics, potential source, and examining the oxidative capacity of PAHs to protect human health is essential. This study investigated the PM2.5-bound PAHs at Dushanzi, a large petrochemical region in Xinjiang as well as northwest China. A total of 33 PM2.5 samples with 13 PAHs, together with molecular tracers (levoglucosan, and element carbon), were analyzed during the non-heating and heating periods. The results showed that the PM2.5 concentrations were 70.22 ± 22.30 and 95.47 ± 61.73 μg/m3, while that of total PAHs were 4.07 ± 2.03 and 60.33 ± 30.80 ng/m3 in sampling period, respectively. The fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the most abundant (top five) PAHs, accounting for 71.74 and 72.80% of total PAH mass during non-heating and heating periods. The BaP equivalent (BaPeq) concentration exceeded 1 ng/m3 as recommended by National Ambient Air Quality Standards during heating period. The diagnostic ratios and positive matrix factorization indicated that oil industry, biomass burning, coal combustion, and vehicle emissions are the primary sources. The coal combustion remarkably increased during heating period. The plasmid scission assay (PSA) results showed that higher DNA damage rate was observed during heating period. PAHs in PM2.5 such as Chr, BaP, and IcdP were found to have significantly positive correlations with the plasmid DNA damage rates. Additionally, the relationship among BaPeq and DNA damage rate suggested that synergistic reaction may modify the toxicity of PAHs.



https://ift.tt/2L8Gz49

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου