Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 30 Μαΐου 2018

Effects of Synchrotron X-Ray Micro-beam Irradiation on Normal Mouse Ear Pinnae

Publication date: 1 July 2018
Source:International Journal of Radiation Oncology*Biology*Physics, Volume 101, Issue 3
Author(s): Marine Potez, Audrey Bouchet, Jeannine Wagner, Mattia Donzelli, Elke Bräuer-Krisch, John W. Hopewell, Jean Laissue, Valentin Djonov
PurposeTo analyze the effects of micro-beam irradiation (MBI) on the normal tissues of the mouse ear.Methods and MaterialsNormal mouse ears are a unique model, which in addition to skin contain striated muscles, cartilage, blood and lymphatic vessels, and few hair follicles. This renders the mouse ear an excellent model for complex tissue studies. The ears of C57BL6 mice were exposed to MBI (50-μm-wide micro-beams, spaced 200 μm between centers) with peak entrance doses of 200, 400, or 800 Gy (at ultra-high dose rates). Tissue samples were examined histopathologically, with conventional light and electron microscopy, at 2, 7, 15, 30, and 240 days after irradiation (dpi). Sham-irradiated animals acted as controls.ResultsOnly an entrance dose of 800 Gy caused a significant increase in the thickness of both epidermal and dermal ear compartments seen from 15 to 30 dpi; the number of sebaceous glands was significantly reduced by 30 dpi. The numbers of apoptotic bodies and infiltrating leukocytes peaked between 15 and 30 dpi. Lymphatic vessels were prominently enlarged at 15 up to 240 dpi. Sarcomere lesions in striated muscle were observed after all doses, starting from 2 dpi; scar tissue within individual beam paths remained visible up to 240 dpi. Cartilage and blood vessel changes remained histologically inconspicuous.ConclusionsNormal tissues such as skin, cartilage, and blood and lymphatic vessels are highly tolerant to MBI after entrance doses up to 400 Gy. The striated muscles appeared to be the most sensitive to MBI. Those findings should be taken into consideration in future micro-beam radiation therapy treatment schedules.



https://ift.tt/2L7PAua

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου