Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 6 Αυγούστου 2018

Cutaneous permeability barrier function in signal transducer and activator of transcription 6-deficient mice is superior to that in wild-type mice

Publication date: Available online 6 August 2018

Source: Journal of Dermatological Science

Author(s): Wei Zhang, Takashi Sakai, Haruna Matsuda-Hirose, Mizuki Goto, Tomoko Yamate, Yutaka Hatano

ABSTRACT
Background

Th2 cytokines exhibit a variety of inhibitory effects on permeability barrier function via signal transducer and activator of transcription 6 (STAT6). However, the role of STAT6 signaling on the construction and/or homeostasis of permeability barrier function in the physiological state has not been fully assessed.

Objective

We compared permeability barrier function between Stat6-deficient and wild-type C57BL/6 mice at steady state.

Methods and results

Measurement of transepidermal water loss and quantitative penetration assay revealed that permeability barrier function was superior in Stat6-deficient mice. Accordingly, expressions of loricrin, acidic sphingomyelinase (aSMase) and β-glucocerebrosidase (β-GlcCer'ase) in epidermis and ceramide levels in stratum corneum were elevated in STAT6-deficient mice. On the other hands, up-regulations of loricrin, aSMase and β-GlcCer'ase were not observed in 3-dimensionally cultured human keratinocytes transfected with siRNA for STAT6. Meanwhile, number of mast cells in the dermis was decreased in Stat6-deficient mice.

Conclusions

These results suggest that STAT6 signaling negatively affects permeability barrier function in vivo, even in the physiological state. However, the superior permeability barrier function in Stat6-deficient mice may be a secondary effect exerted via cells other than keratinocytes, such as mast cells, since mast cells are known to influence permeability barrier function in vivo. Blockade of STAT6 signaling might be a strategy to augment the permeability barrier function.



https://ift.tt/2ALDVB0

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου