Abstract
Purpose
Most breast cancers (BCs) express estrogen receptor α (ERα) and are treated with the endocrine therapy (ET) drugs 4OH-tamoxifen (Tam) and fulvestrant (ICI 182,780; ICI). Unfortunately, a high fraction of ET treated women relapses and becomes resistant to ET. Therefore, additional anti-BC drugs are needed. Recently, we proposed that the identification of novel anti-BC drugs can be achieved using modulation of the intracellular ERα content in BC cells as a pharmacological target. Here, we searched for Food and Drug Administration (FDA)-approved drugs that potentially modify the ERα content in BC cells.
Methods
We screened in silico more than 60,000 compounds to identify FDA-approved drugs with a gene signature similar to that of ICI. We identified mitoxantrone and thioridazine and tested them in primary, Tam-resistant and genome-edited Y537S ERα-expressing BC cells.
Results
We found that mitoxantrone and thioridazine induced ERα downmodulation and prevented MCF-7 BC cell proliferation. Interestingly, while mitoxantrone was found to be toxic for normal breast epithelial cells, thioridazine showed a preferential activity towards BC cells. Thioridazine also reduced the ERα content and prevented cell proliferation in primary, Tam-resistant and genome-edited Y537S ERα expressing BC cells.
Conclusions
We suggest that modulation of the intracellular ERα concentration in BC cells can be exploited in in silico screens to identify anti-BC drugs and uncover a re-purposing opportunity for thioridazine in the treatment of primary and metastatic ET resistant BCs.
https://ift.tt/2NgqD4r
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου